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ABSTRACT 
 
This paper discusses a powerful new application of the Quantitative Feedback Theory (QFT)  to a class of 
problems which are becoming more and more prevalent and may involve fractals or a class of distributed 
parameter systems. In Part I the predicament of interest is posed within the context of identification/ 
classification of network congestion and its relationship to fractal objects. A review of five constituent 
disciplines is then conducted to provide the requisite background information. In Part II, the general QFT 
problem is briefly reviewed. Finally, in Part III, the well-known diffusion problem is analyzed several 
different ways to provide a common thread between the Parts I and II presented. The diffusion problem 
involves many similar issues that occur inside the network congestion problem, the fractals concept, and can 
also be formulated within a QFT framework. 
 
1.0 INTRODUCTION 
 
 Quantitative Feedback Theory is an area of controller design that has wide applicability because of its 
simplicity and intuitive nature yet can deal with issues such as robust stability, target tracking, and disturbance 
rejection. In this paper, uses of QFT to better understand how to analyze and assess the performance of 
complex networks and systems from nature and in other applications will be conducted. In many cases this 
may be characterized as distributed parameter systems. The goal is to better comprehend how such schemes 
work.  For example, it is desired to better quantify how to objectively measure performance, vulnerability, and 
other attributes that occur in such intricate network systems. For many of these entities, including those in the 
military, a useful measure of performance is the flow of information through such networks. Vulnerability can 
then be defined as the sensitivity to flow. The presumption is that a poorly performing network is congested 
and the flow is slow. A better performing system would have a higher rate of flow. Since flow performance is 
measured in units of bits/second for information systems, the flow rate times time provides the total number of 
bits going through the network. This also has analogies to discrete event systems.  One can then view the 
overall task in terms of the bits or discrete events required to actually complete the mission in minimum time. 
Another way to examine this concept is via the expected time to complete the overall mission being calculated 
as the ratio of the fixed number of bits divided by the flow rate in bits/second. 
 Networks are ubiquitous as noted in numerous applications such as electric power grids, financial 
systems, railroad tracks, water distribution systems, food and medicine allocation procedures, etc. which are 
co-located and complex in nature. Also, information systems, email systems and nature’s way of managing 
physiology can be characterized by multifaceted networks. On the other hand, some networks can be very 
destructive. For example, a model of a counter improvised explosive device (IED) network exists for a 
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successful attack on American forces. The goal for the friendly forces would be, in this case, to take such a 
network down or cause it to have a high congestion. Another example of an undesirable distributed system 
would be the well-known sexual network involving the spread of disease such as in HIV. In this case the goal 
would be to make the flow minimal through the entity resulting in a maximally congested structure. This 
paradigm represents the reduction of the spread of disease because the flow is minimal. Figure (1) shows a 
possible visual rendering of a network system of interest that may be presented to a decision maker. In areas 
where the flow is fast (high bits/sec) it is rendered green. In other areas the flow is slower (yellow) or even 
more slower (orange) and perhaps completely congested (red color). It is noted in Figure (1) that the areas of 
higher spectral wavelength have more feedback loops and appear more intricate. When looking at a complex 
display, this visual rendering adds value to decision makers who immediately need to know, spatially, where 
the congestion area may be located.  

Figure (1) – The Network Congestion ProblemFigure 3 – The Original Network-Centric Distributed System
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                                 Figure (1) – The Original Network-Centric Distributed System  
 

When controlling complex systems such as in distributed networks, traditional control theory methods 
may require some modification. For example, linear feedback theory is mainly concerned with transfer 
functions, which are devised as ratios of outputs to inputs of systems, using as a basis a sine wave time 
function. The sine wave function has the property that all its derivatives exist and are bounded.  Thus the sine 
wave is a C∞  function. On the opposite spectrum of continuity, a C0  function termed the Weierstrass function 
is introduced herein which has the unique property that it is forever continuous and nowhere differentiable. 
Figure (2) shows a comparison between these two extreme basis functions (a C∞ function versus a C0 
function). It is demonstrated later that the C0 time function (Weierstrass) is also a fractal object enjoying 
certain optimality properties that may be leveraged in good control system design if flow performance is 
important. It seems plausible that QFT theory can then be used to analyze objects that may have as a basis 
function the Weierstrass-like functions as well as those characterized by sine waves.  The next section will 
elaborate on the requisite background of these fractal objects and to develop a framework to analyze them 
within the context of Quantitative Feedback Theory. 
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Figure (2a) – A sine wave – A function of the type C∞

Figure (2b) – The Weierstrass function of the type C0
 

To determine visual renderings such as in Figure (1), it is shown in the sequel that the analysis of network 
performance can be related to the intersection of five areas: optimization theory, graph theory, information 
theory, fractional calculus, and bioinspired design (fractals).  The next section will discuss these five areas, 
individually, in more detail in the Part I presentation on fractals and bioinspired design. 

 
 
2.0  PART I – FRACTALS AND BIOINSPIRED DESIGN 
 
 Part I of this paper will examine certain related areas involving fractal objects of nature. To better 
understand how different disciplines interact to shed light on the congested network flow problem, Figure (3) 
shows the intersection of the five areas of interest that will be discussed, all of which have some relationship 
to the problem of understanding performance and vulnerability of complex networks.  
 To summarize, the five areas to be discussed include (1) Bioinspired or fractals, (2) The Fractional 
Calculus, (3) Information Theory, (4) Graph Theory, and (5) Optimization of a network system. An 
application from the US military is then worked to show how flow calculations and sensitivity could be 
determined in a brute force sense. From such an analysis, a robustness paradigm can be determined. With this 
problem numerically solved, a QFT formulation that can deal with the control of these complex networks is 
synthesized. The first area to be discussed is termed bioinspired or fractals and raises issues to be addressed in 
the remainder of this paper. 
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                               Figure (3) – Five Pertinent Areas to Understand Network Analysis 
 
2.1  Bioinspired or Fractals 
  
 From Figure (3), the first of the five areas to be discussed involves bioinspired design or fractals. 
Fractals are nature’s way of structuring a number of biological entities. Figure (4) portrays some of  the better 
known fractal visual images. Certain fractals can be shown to have dynamics that satisfy the diffusion 
equation. It follows that there exists a fractional differentiable equation to characterize the flow of these types 
of systems in nature. To further motivate the approach taken here, Figure (5) shows the optimal diffusion of 
oxygen in the human lung or the upward diffusion of water in trees.  This begs the question on how trees 
transport water from the roots to the branches and, in a similar manner, why the lung diffuses oxygen in a 
manner where a fractional dimension comes into play? It can be shown in Figure (5) that the architecture  
governing optimal diffusion among the constituent branches satisfies the following relationship: 
 
                                                                            (d1)γ = (d2) γ + (d3) γ                                                                 (1) 
 
where   γ  = 2.5 for oxygen absorption and is not an integer. This was noted over 500 years ago by Leonardo 
da Vinci [22]. If  γ were an integer representation, such as in equation (1), it would be considered a Euclidean 
space (γ = 1, 2, or 3). However, if  γ is not an integer, this is termed a non-Euclidean space, which is 
characteristic of fractal objects.  The term “fractal” is derived from the Latin word “fractus” which means 
“broken” or “fractured.” It will be demonstrated that a fractal is scale free (having a self-similar property). 
Such entities are also forever continuous and nowhere differentiable. For some other example fractals, they 
may have infinite area and finite volume. In other situations, fractals could have an infinite circumference but 
finite area. In both cases the higher dimension is finite, but the next lower dimension is not. This has 
advantages in nature where the goal, for the example of the lung, is that a finite volume exists for the lung, but 
the distribution (or flow) of oxygen is proportional to the area of the lung surface, which is to be maximized.  

5A - 4 RTO-EN-SCI-195 

 



Quantitative Biofractual Feedback - Part I 
Overview - Biofractals  

 

 

Hence, nature selects the fractal architecture for improving flow performance. This provides an optimal 
distribution system for the flow variable (oxygen, water, blood, etc.), which is desired. Finally, this viewpoint 
provides a non Euclidean geometric method to view the world, which is vastly understudied. It should be 
emphasized that fractals are not minimum energy designs. Rather, they maximize flow properties which 
motivates their study in complex networks where performance is very much related to flow characteristics. 
 

 
Figure (4) – Four Classical Fractal Objects as Visual Renderings 
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                  Figure (5) – The Optimal Distribution Problem from Nature (Bioinspired Design)  
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In the study of fractals, originally from B. Mandelbrot [22] the question was raised, “How long is the coastline 
of Britain?” When measuring the coastline of Britain by a ruler that constantly decreases in size, the logarithm 
of the total coastal length plotted versus the reciprocal of the ruler length shows a straight line on a log-log 
plot (similar to the top plot in Figure (6)). This demonstrates the power law or “scale free effect.” The slope of 
the line in this log-log plot gives rise to the Hausdorff dimension, which may be a non integer. Two examples 
are now worked to show how this fractional dimension occurs which makes the study of such systems non 
Euclidian. The first fractal object discussed is the Koch Snowflake which has a fractional dimension of 
1.26185… Such a figure is very interesting because it has an infinite circumference and a finite area. In figure 
(6), the Hausdorff dimension (Hausdorff-Besicovich) D can be defined via: 
 
                                                                              (Total Length) = LD                                                              (2) 
 
where L is the unit basis length and the (Total Length) is the measurement variable (perimeter for objects in a 
two dimensional framework). 

Figure (6) – The Scale Free Effect Demonstrating Self Similarity

Fractal Example 1– The Koch Snowflake D = 1.26185…..

Fractal Example 2– The Cantor Set,  D = 0.63092….
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2.1a The Koch Snowflake Fractal 
 
In Figure (7) a description on how to synthesize the Koch snowflake is presented. A line of unity length is 
divided into 3 parts. For the middle part, an equilateral triangle is then constructed. The total length of the 
object then increases to 4 units or (4/3)n where n is the number of times the operation is repeated. Figure (8) 
starts with an equilateral triangle, as a basis, and repeats the operation on each side indefinitely. 
 

 
Figure (7) – The Preliminary Construction of the Koch Snowflake 

 
Figure (8) portrays various versions of the Koch Snowflake as n→∞ starting with an equilateral triangle. By 
comparing the total perimeter = (4/3)n as n→∞  demonstrates that the perimeter is unbounded. What is  
 
 
 

Finite

Area

 
Figure (8) – The Koch Snowflake as n → ∞ 

 
interesting is that the total perimeter is unbounded but the enclosed area of the fractal figure is finite, since the 
entire object in Figure (8) is bounded within a circle as indicated, the area still remains finite. Returning to 

RTO-EN-SCI-195 5A - 7 

 



Quantitative Biofractual Feedback - Part I 
Overview - Biofractals  

 

Figure (6), the top diagram is the log of the total length (perimeter) versus log (1/ε), where ε is the ruler 
length. On a log-log plot, a line of positive slope (Hausdorff dimension of D = 1.26185.. = [log(4)]/[log(3)]) is 
greater than one which implies the total perimeter diverges to infinity as n→∞. The second fractal object of 
interest will have a vanishingly small perimeter. From the perspective of having a derivative, a tangent to the 
limiting diagram in Figure (8) would be forever discontinuous indicating a lack of a derivative.  
 
2.1b The Cantor Set Fractal 
 
 The second classical fractal considered is the Cantor set or “Cantor Dust” as noted by Mandelbrot. 
This object has a fractional dimension of 0.63092… and has the interesting property that the set of deleted 
points have a Lebesgue measure of 1.0 for an initial interval of length unity. The second fractal set introduced 
here has a total final length with a Lebesgue measure of 0. Figure (9) shows the Cantor set developed with  
 

 
 

Figure (9) – The Cantor Set as a Fractal Object 
 
the following simple set of rules: The top line in Figure (9) is presumed to have an original length of unity. 
The middle third of this line is then removed. The total length is then (2/3) times the original line. The process 
is then repeated with the middle third removed from the lines in the second row in Figure (9). The process is 
then repeated on the third row, on the fourth row, etc.  The overall length becomes (2/3)n  and as n→∞ the 
overall length → 0. This resulting set is the “Cantor Dust” as described by Mandelbrot. Referring back to 
Figure (6), the lower diagram plots the total length versus the reciprocal ruler length (1/ε) on a log-log scale. 
On this log-log plot, a line of negative slope (Hausdorff dimension of D = 0.63092.. = [log(2)]/[log(3)]) is less 
than one which implies the total perimeter converges to zero as n increases. It is said the deleted points have a 
Lebesgue measure of 1.0 and the remaining points (Cantor dust) have a Lebesgue measure of 0. For 
completeness, a description of how to measure the fractal length, Hausdorff dimension, and other attributes is 
briefly outlined.  
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2.1c The Box or Disk Covering Method to Evaluate the Measurement Variable 
 
 Fractals also occur in numerous applications in real time data series such as in physiological data, and 
it is desired to characterize the Hausdorff dimension by empirical means. Hence, the discussion of fractals 
should also include measurement of the elusive perimeter or length through a box or disk covering 
methodology. Figure (10) shows how this is accomplished for the Koch snowflake. By inserting disks or 
boxes around the fractal object, the total length can be determined by summing the disk lengths. 
 

 
Figure (10) – The Box/Disk Length Counting Method as Applied to the Koch Snowflake Fractal 

 
 To show the further applicability of the material presented up to this point, it should be noted that the 
scale free property of  visual fractals can be viewed as a visual image is drilled down (magnify a portion of the 
image). The magnified image is similar to the original image no matter what degree that portion of the fractal 
is increased in size. Thus for the Koch snowflake fractal of Figure (8) as the final fractal is magnified at  
higher and higher powers of amplification, the original fractal shape remains the same.  
 The fractal objects presented so far have been spatial in a sense but they also may represent temporal 
data. For time series data, this property is sometimes termed “statistical self similarity”, referring to the real 
time domain attributes of the information. For example, for real time data, Leland, et al.  [20], in Figure (11) is 
a plot of frequency of messages versus time on the Internet in a dynamic sense, as the time scale decreases 
logarithmically (for sampling times of ∆T = 100, 10, 1, 0.1, and 0.01 seconds). Drilling down on any plot 
(magnifying by changing the ∆T by a factor of  1/10) yields a time series with a similar shape, which is very 
analogous to the spatial fractals presented previously. In Figure (12) are data from another study on the 
Internet, Crovella and Bestavros  [6] in which scale free plots were obtained from World Wide Web traffic. 
These results also extend to a number of physiological systems. In particular, West et al.  [7, 35], when 
plotting the individual heartbeat variability versus time, the graph shows this same statistical self similar 
property. In Figure (13) from [35], as the magnification of the time series is increased, the same pattern 
emerges.   The box/disk counting method in Figure (10) is ideal for determining the Hausdorff dimension of 
these types of time series data and classifying the type of fractal that is in the data. To determine the Hausdorff 
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dimension, for physiological data, the total length of a time series is first determined as in Figure (10). A plot 
is then constructed with the log of the regressed total length versus the log of the reciprocal ruler length. The 
slope of this line is the empirical derived Hausdorff dimension.  
    
 

Figure (11) – A Time Series Fractal – Internet Traffic

From [20]

  Figure (12) from [6] Showing Scale Free Time Fractals

From [6]

 
 

Figure (13) – Physiological Data – Variation of the Time Interval Between Heartbeats

From [35]
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2.2 The Fractional Calculus 
 
 The second important topic to relate the five areas of interest in Part I of this paper is the Fractional 
Calculus, Oldman and Spanier [25]. Over 310 years ago, the mathematician L’Hopital asked Leibniz, the 
inventor of the notation in equation (3) (y(t) is the output variable and u(t) is the input variable of a physical 
system) the following question: “Suppose n were not an integer?”  
                           
                                                                                                                                                                            (3) )()( tuyd

=
 
The response by Leibniz indicated that such a notion was possible, may lead to controversy, but also may add 
value in new discoveries. Prior and modern work in this area has shown that n may be irrational            or even 
complex             and have some utility.  A brief motivation on why this field has attracted new attention in 
modern times is presented next. 

dt
t

n

n

2=n

1−=n

  
 2.2a Two Motivations for Modern Studies in the Fractional Calculus 
 
 The first motivation for using fractional calculus is related to new research in Materials. In the last 5-
10 years, a typical literature search in the areas of fractional calculus shows hundreds of recent hits in the 
Physics and Materials areas. The motivation for this renewed interest in this field, which also has achieved a 
high level of rigor, is due to applications in composite materials.  In Figure (14) is a picture of a composite 
material composed of multi layers of different constituent materials. The Bode plot for a transfer function of 
some output to input variable has a slope which of the form s-n where n is clearly not an integer. 
 

Figure (14) – Composite Materials and a Bode Plot 
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When composite materials are constructed, there is no reason why the Bode plot slope should be an integer 
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power (positive or negative) of the Laplace transform variable s.  To capture the real time dynamics of the 
response of such materials in the time domain, it will now be required to have fractional differentiation 
properties (treating the Laplace transform operator in the sense of a derivative operator).  
 The second reason why the fractional calculus has achieved a new interest is due to the ability of 
fractional derivatives to discern the scale free property already discussed for fractal objects. This property is 
presented in equation (4) without proof but will be discussed shortly: 
 
Scale Free Property of a Fractional Derivative: 
 
                                                                                                                                                                            (4) q

q
q

q

q

bxd
bxfd

dx
bxfd

)](
)(

]
)( b

[[
=

 
 In equation (4), the fractal parameter is the term “b” and the term “q” need not be an integer. This 
means the fractional derivative is valid over all relative scales and the dynamics remain intact, but only 
change by a constant factor.  This has analogies to the fractal objects in which by drilling down on visual 
objects, the same figure consistently appears. To show this is equivalent to a power law effect, Moffat,  [23] 
the following definition is noted: “A power law f(x) = xa  has the property that the relative change in:  
                                                                                                                                                                            (5) akf

=
(

xf
kx

)(
)

 
is independent of x.”  This has the same meaning as equation (4) because the function f(x) lacks a 
characteristic scale (this is termed “scale free” or “scale invariant”) since it does not depend on x. This is 
illustrated with an example. Substituting (ky) into f(y) = ya yields the following steps: 
 
                                                                                                                                                                            (6) a

a k
y
yk

yf
f

===
(

(
(

 
Again, from equation (6), since the right hand side does not depend on x or y, this shows the lack of 
characteristic scale and demonstrates that power law functions have independence from the x or y scale 
which has been illustrated for the fractal objects previously considered.  It is now appropriate at this point in 
time to introduce the Weierstrass function. 
 
2.2b –The Weierstrass Function – A Fractal Time Series – Forever Continuous -Nowhere Differentiable 
 
 So far fractal objects have been identified in a spatial and temporal sense in terms of visualizations. 
Fractal objects also satisfy fractional differential equations. As noted previously, the fractal objects have the 
attribute that they may be forever continuous and nowhere differentiable. It is appropriate to now introduce 
the fundamental basis functions for fractals, which has analogies to the sine wave for Euclidean dimensional 
systems, but has applicability to non Euclidean systems. As originally synthesized by K. Weierstrass in 1872 
and presented to the German Academy of Science, equation (7) describes the first version of the Weierstrass 
function which was proclaimed to be forever continuous but never differentiable at any point. 
      
                                                                                                                                                                            (7) 

a
a

a

aky
y

ky )
)
)

0
))

n

nn xbx ∑= cos(( af π
∞

= 
where 0 < a < 1, b is a positive integer and ab > 1 + (3/2)π (the original and conservative conditions specified 
by Weierstrass).  The existence of a function that was forever continuous but nowhere differentiable provided 
a culture shock to the mathematicians at that time, where it was presumed that such a function could never be 
constructed. Figure (15) shows a plot of a typical Weierstrass function and the same scale free properties 
appear, as with fractals. This is seen as magnification, of any portion of the curve, reveals the original curve 
all over again at any level of amplification. 
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Figure (15) – The Weierstrass Function – A Scale-free Time Series 

 
It is important to explain the modus operandi of how K. Weierstrass originally synthesized this function and 
how it can be used in future applications involving the analysis of systems that have a scale-free property. To 
understand how a function can be synthesized which is forever continuous but never differentiable, consider 
the power series representations in equation (8): 
 
                                                                                                                                                                            (8) ...1

1
+++==∑ xxx

x
x

 
It is obvious that the series converges if and only if  |x| < 1. This can be viewed within the framework of a 
radius of convergence in Figure (16). Thus x could be positive, negative or even a complex number and the 
series in equation (8) will converge if the magnitude of x lies within the unit circle in Figure (16). What 
Weierstrass did to the function f(x) in equation (7) was to takes its derivative as follows: 
 
                                                                                                                                                                            (9) 

1 32

0
+

−

∞

=n

n

0
)sin()( nnn xbbx ∑−= )('

n
af ππ

∞

= 
Since the constant factor  π can be taken outside the summation in equation (9), requiring |a|<1 can be shown 
to guarantee convergence of  f(x) in equation (7), but specifying the product terms |a b| > 1 in equation (9) puts 
each term outside the radius of convergence of the power series for f’(x).  Thus f(x) is well defined but f’(x) 
will always diverge. Hence a function has been created which is forever continuous (since f(x) is only 
composed of C∞ functions of the sine and cosine nature) but f’(x) can never be finite because the series in 
equation (9) will always diverge. What is most interesting is that the fundamental Weierstrass function in 
equation (7) starts with C∞ functions (cosine wave) but ends up with a C0 time series. A brief description of the 
fractional calculus methods is presented next with its relationship to the prior work.  
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Figure (16) – Radius of Convergence for a Power Series 

 
 
 
2.2c – A Brief Introduction to the Fractional Calculus 
 
 Since brevity must be the style here, only the salient points with regard to Fractional Calculus are 
presented with limited rigor. The first step is to define the Gamma function which permits the definition of the 
factorial function to be generalized to non integers: 
 
Step 1: Define the Gamma Function:                                                                                                           (10) ,)( 1∫ −−=Γ duuez zu

∞

 0
 
Thus it can be shown that:                                                                                                                                (11) 1)1( =Γ
 
By integration of parts, it then follows:                                                                                                            (12) ),()1( zzz Γ=+Γ
 
The key relationship between a factorial function and the Gamma function now results:      
 
                                                                                                                                                                          (13) ,!)1( zz =+Γ
 
But z does not have to be an integer in equation (10), for example let z = ½ resulting in the following: 
 
                                                                                                                                                                          (14) π=Γ )

2
1(

 
Thus a methodology now exists (via equation (13)) to express factorials of fractional quantities. The second 
step is to consider fractional derivatives of powers of xm, for example, where m is an integer: 
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Step 2: Develop Fractional Derivatives for xm: 
 
Starting with:                                                                                                                                                    (15) 1−= mxx

dx
mmd

 
If β were an integer, it would follow that: 
                                                                                                                                                                          (16) 

β
β β−

= xx
dx )!(

β
−mm

m
md !

 
To generalize this to the case that β may not be an integer would imply from equation (13): 
 
                                                                                                                                                                          (17) 

β
β β +−Γ

= xx
dx

β
−+Γ mm

m
md

)1(
)1(

 
This is a valid definition for β, not an integer, e.g. the following fractional derivative can be easily obtained: 
 
 
                                                                                                                                                                          (18) 2

1
2

1 1 xxx
π

==
 
 
 
Now suppose a function f1(x) is represented in a power series in xn, i.e. 
 
                                                                                                                                                                          (19)                        
                        
 
Then the fractional derivatives of f1(x) can be calculated (term by term) using equation (17) and the series has 
well defined terms. If q→∞  in equation (19), the series would converge if the terms an and bn fall within the 
radius of convergence as specified in Figure (16).  The next step is to generalize this concept to functions that 
are related to eax. 
 
Step 3: Develop Fractional Derivatives for eax: 
 
Following the discussion in equations (15-17), define the derivative operator Dv as follows: 
 

                                                                                       v

v
v

dx
dD =                                                                  (20) 

 
Then for eax, the following relationship exists if v is an integer or non integer. 
 

                                                                      axvax
v

v
axv eae

dx
deD ==                                                          (21) 

 
Now suppose a function f2(x) can be represented as a power series in eax as follows: 
 
                                                                                                                                                                          (22)                        
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It then follows that the function f2(x) can be differentiated term by term using the relationship in equation (21). 
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As before,  if q→∞  in equation (22), the series would converge if  the terms an, bn and cn fall within the region 
of convergence as specified in Figure (16).  Finally these methods can be even further generalized to include 
all possible trigonometric functions.  
        
Step 4: Develop Fractional Derivatives for eiθ: 
 
Using the well-known Euler relationship (i is a complex number): 
 
                                                                                                                                                                          (23) )sin()cos( θθ ie +=θi

 
And the inverse relationships between the trigonometric functions, e.g.: 
 
                                                                                                                                                                          (24) 2

)cos(θ =
θθ ii ee −+

 
Then for any series f3(x) that can be represented by a Fourier series description such as: 
 

                                                             )sin()cos(
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0
3 nxbnxa
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xf n

q

n
n ++= ∑

=

                                        (25) 

 
Using the relationships in equations (21, 24-25) has a well defined fractional derivative. Again if q→∞  in 
equation (25), the series would converge under appropriate conditions. 
 
Finally it is noted that since f1(x), f2(x), and f3(x) represent most common functions, the fractional derivatives 
have wide applicability. Incidentally, for the Weierstrass function (defined in equation (7)), the fractional 
derivatives could also be calculated within an infinite series framework using equation (7). This is a strange 
situation where the Weierstrass function cannot have a derivative but the fractional derivatives may have an 
analytical representation in terms of an infinite series, but the well defined series would have a divergence 
problem.  
 It should also be noted that the fractional calculus now has a rigorous approach to optimization as 
presented in [1,2]. The next area to be discussed is related to information theory. 
 
2.3 Information Theory 
 
 The next topic (area 3 from Figure (3)) considered involves information-theoretic methods. This has 
value in the study of flows in complex networks because there is a simple framework between network 
structures and developing the information flow quantities [28, 29, 31, 34]. From its early history, in 1948, C. 
Shannon [33] developed a theory of how information can be computed between sources and received signals. 
Figure (17) represents how the information channels are modelled for the network science problem considered 
in this paper.  One particular variable of interest is the mutual information variable (I(x;y) in Figure (17)), 
which is defined as the reduction in uncertainty in an input object by observing an output object. Mutual 
information is interesting because it provides a flow rate (bits/second) which is also amenable to the study of 
performance in graphs and networks. Another important variable that also provides performance evaluation is 
the relative information distance variable DR. These variables are defined as follows: 
 

                                            H(x) = The input uncertainty to the channel                                                  (26) 
                                                  H(y) = The output uncertainty of the channel.                                               (27) 

                                           H(x/y) = Equivocation lost to the environment.                                              (28) 
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                                                H(y/x) = Spurious uncertainty from the environment                                       (29) 
                                                  I(x;y) =  Mutual information transmitted                                                        (30) 

I(x;y)= Mutual 
Information

 
 

Figure (17) – The Classic Information Channel and Constituent Quantities 
 
More specifically, the details of equations (26-30) can be better described by letting p(.) represent the 
probability of an event. For an information channel with input symbol set x ε X, of size n, and received 
symbols y ε Y at the output set of size q (q may not equal n), the following entropy (H (.)) relationships can be 
defined: 

                                                         H(x)       =                                                        (31) 2
1

( ) log (1/ ( ))
n

i
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p x p x
=
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j                                                         H(y)     =         2
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=
∑ y                                                 (32) 

                                                       H(x,y)    =          
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                                                       H(x/y)  =        
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       and                                         H(y/x)  =         
,
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p x y p y x∑                                         (35) 

It can then be shown to be true (Cover & Thomas  [5]) that: 
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                                                              I(x;y) = H(x) + H(y) – H(x,y)                                                             (36) 
 
where the mutual information I(x;y) satisfies (which is appropriate as a flow variable in networks):    
 
                                                                             I(x;y) > 0                                                                              (37) 
 
Finally, another key variable that is useful is the relative information distance DR defined as follows: 
 
                                                                 DR =  H(x/y)+H(y/x)  = H(x) + H(y) – 2I(x;y)                                (38) 
 
where DR also has a similar property, as in equation (37): 
  
                                                                                         DR  >  0                                                                    (39) 
 
There are special properties and advantages that variable DR provides over I(x;y) which are known in the 
literature [5] and restated here without proof: 
 
Property 1:   DR satisfies the requisite properties of a metric; however I(x;y) is only a positive measure. 
Please see [30] for a counter example where I(x;y) fails as a metric. 
 
Property 2:   The relative information distance metric DR is the complement of  I(x;y),(cf. [31]) i.e. 
           
                                             );();( yxIyxDR =   or   );();( yxDyxI R=                                                (40) 
 
The utility of using information theory constructs to evaluate performance in complex networks can be 
summarized by the following four salient points: 
 
(P-1) The Units of I(x;y) or DR(x;y): 
The units of I(x;y) and DR(x;y) are both bits/second. Using I(x;y), the total bits would be the product term  
(I(x;y) *∆T) where ∆T is the task completion time. Thus to complete the total bits through a system, it would 
take, on average, ∆T seconds as a measure of task performance.  This definition can also be applied to DR, but 
it is not as lucid. 
 
(P-2) Minimum Time Corresponds to Maximum I(x;y) and Vice Versa: 
From the previous point, the critical time to complete a task can now be written:       

                                                                                     
);( yxI

BitsT =∆                                                              (41) 

Thus if I(x;y) is maximized, and the bits are fixed, then the critical time is minimized. Thus a minimum time 
scenario could be characterized as a maximization of the mutual information I(x;y) flow rate. Also from 
equation (41), to maximize the time to complete a task, then the goal would be to minimize I(x;y). 
 
(P-3) The Analogy to Discrete Event Systems 
If the completion of the mission requires a number of discrete event tasks to be accomplished, then equation    
(41) may be modelled via:                                                        
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);(

   
yxI

EventsTaskTotalT =∆                                                     (42) 

                                                                   
If bits and events can be related, I(x;y) may be interpreted as having units of events/second and from equation 
(42), the maximization of I(x;y) will provide optimal minimum time performance. The minimization of I(x;y) 
will provide worst case maximum time performance, which may be the desired outcome for a hostile network. 
 
(P-4) Optimal Flow Performance and an Attack Paradigm to Congest a Network 
From equation (42) and the prior discussion on adversarial networks, the strategy that produces the minimal 
I(x;y) provides a paradigm and strategy to attack a network or reduce its efficacy. One can view the nodes, 
such as in Figure (1) as control variables to be manipulated to adjust the overall flow vector (set of network 
flows) that will adjust the overall mutual information flowing through the network. 
 
 The fourth area of interest from Figure (3) refers to Graph theory, which is pertinent to better 
understand the architecture of networks which has a considerable influence on performance, vulnerability, and 
constraints in complex distributed systems. 
 
2.4         Graph Theory 
   
 Graph theory is fourth area of discussion from Figure (3) which relates to the characteristics of the 
architecture of complex systems.  The distinction is first made here between a random graph and a scale free 
graph. Many modern graphs tend to have an architecture similar to scale free graphs (“the rich get richer 
philosophy”) and they are compared here to the random graph architecture.  Of course, other types of graph 
structures exist but they are not elaborated on in this paper. 
 
2.4a – The Architecture of a Random Graph  
 
 A random graph or Erdös-Rényi graph [18] can be constructed by having approximately the same 
number of links between the nodes. A simple example is the land highway system in the USA where the 
major cities have about the same number of links (major highways) between each major city (left plot in 
Figure (18) from [18]). In Figure (18) the term random graph means that the distribution of the number of 
links (x axis) follows a normal curve with the mean of the density as the most common number of links 
between nodes. This framework is sometimes called a thin tail distribution. 
 
2.4b – The Architecture of a Scale-free Graph 
 A scale free graph means that a power law relationship would exist for the same plot as in Figure (18) 
for the random graph (number of nodes with k links versus number of links). This is typical of the airline 
routes, as displayed in Figure (18) on the right most plot. In this case there are many nodes with a small 
amount of connections and a few key nodes with many connections, which is typical of airline routes with 
central hubs. There are many common networks that are considered to have a scale-free architecture such as 
the Internet as displayed in Figure (19). In this instance, as new links are added, the most highly connected 
nodes more likely gain additional links, which is the “rich get richer” concept. This framework is sometimes 
called a fat tail distribution because on a linear plot such as Figure (18) on the right, the tail is much higher to 
the right as compared to the random graph case. Figure (20) shows additional evidence of the scale free 
property of the Internet, Faloutsos, Faloutsos, and Faloutsos [10]. A short discussion on different types of  
vulnerability of the various  graphs is pertinent. 
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2.4b.1 Vulnerability Aspects of the Different Graph Structures 
 Vulnerability has different interpretations with respect to the two types of graphs previously 
discussed, which is also dependent on the type of network attack. For example, for a random graph, it is less 
vulnerable to a focused attack on any one node in comparison to a scale–free graph. For the scale free graph, 
however,  the focused attack is much more effective if it is directed against a highly connected node.  If  the  

Random Scale Free

 
Figure (18) – Random Graphs versus Scale-free Graphs for Transportation Systems 

 

 
Figure (19) – The Internet – A Scale-free Graph 
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From [10]

 
Figure (20) – Evidence of the Internet being Scale-free in Structure 

 
type of attack is random (a node is selected at random), then the scale-free graph is less vulnerable. This is 
because, on the average, the nodes with the fewest connections, will more frequently be attacked (there are 
many more of these nodes), which has a reduced effect. For the random graph and the random attack, all 
nodes are equally probable of being compromised and the overall effect on the network’s performance will be 
about the same.  A short discussion on the constraint relationships that may arise for the flows through a 
network also arise from graph theory constructs and the architecture employed. 
  
2.4c.1 Constraint Relationships That Exist in Graph Theory 
 
 Figure (21) displays the concept of a “cut set” that occurs in Graph Theory. The cut set is used in  

Σ Currents = 0 into a node.

i1

i2

i3

i1 = i2 + i3

Kirchoff’s Law applied to Graph Theory

Network

f1
f2

f3

f1 = f2 + f3

 
 

Figure (21) – Kirchoff’s Law in Circuits and Networks 
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electrical circuit theory and the top diagram shows the analogy to the Kirchoff’s current laws in which the 
sum of currents into a node must sum to zero. It is a statement that flows cannot be created or destroyed and 
they must be accounted for. A cut set is a closed curve. All flows that enter a cut set must leave the cut set 
unless a source or sink of flows resides inside the cut set. If a source or sink falls within a cut set, then the sum 
of the flows is adjusted, accordingly, to include the values of the source or sink. 
 The fifth and last topic mentioned in Part I discusses an example of a network which could be worked 
via a brute force computational method.  It demonstrates the ability to identify sensitivity and performance 
using a computationally intelligent method. 
 
2.5         Optimization of a Network System 
 
 An example is now worked regarding a well-known air-logistics network in US Air Force 
applications. The problem is formulated in terms of graph theoretic means with the unknown vector of flows 
to be determined. This is equivalent to using the nodes to manipulate the flows and this begs the question of 
what set of flows maximizes the overall network performance  and also what other set of flows may minimize 
the overall network’s performance? Using principals from Graph Theory, such as Kirchoff’s Law, a set of 
constraints is determined from the cut set laws (application of Kirchoff’s Law). A sensitivity function is 
defined in the sequel as the rate of change of cut set flow to the total network’s mutual information flow. 
Using genetic algorithms in a computational performance study, the flow vectors are then determined which 
maximize and minimize the overall total network’s mutual information flow. The sensitivity function is then 
easily calculated for any nodes or sets of nodes through the cut set. The sensitivity of the different nodes is 
determined and examined.   
 First, a description of an air logistics system is presented, Lyons,  Repperger, and Seyba,  et al. [21, 
31, 32]. The flow performance optimization is conducted on an air logistics model by utilizing genetic 
algorithms [26,27]. 
 
2.5a – The Air Logistics System 
  
 The air logistics system considered in this paper represents all the tasks required to refresh an aircraft 
after it has landed. This includes removing the passengers and cargo, cleaning the aircraft, uploading new 
cargo and passengers in the proper sequence. The five key players in Figure (22) are the ATOF (the overall 
coordinator), the PS (passenger services), the CS (cargo services),  FS (fleet services), and RS (ramp services). 
Each of these players has key roles that have to occur in a proper time sequence. The goal of this optimization 
study is to determine the optimum communications between the key players. The flow arrows are the 
communications. In Figure (22) is the architecture of the minimum possible communications scenario where 
the ATOF only talks back and forth individually with each of the other four players. The goal is to find the 
optimum amount of communications. Too little or too much communications may not be appropriate. In 
Figure (23) is the opposite extreme where all players could talk with each other, whether or not it is necessary. 
The first step is to define the initial architecture between the two extremes of Figure (22) and Figure (23). 
 
2.5b – The Architecture Issue 
  
 The first step is to define a reasonable architecture (number of flow arrows to be obtained) with too 
few links (Figure (22)) and, perhaps, too many links (Figure (23)) which are to be optimized for overall 
network performance. Links refer to communications between nodes.  Studies were run with human subjects 
(Lyons [21] , Repperger, et al. [30, 31], Seyba, et al. [32],) to determine the initial architecture. Figure (24) is 
the finally selected architecture which seemed to evolve from the study with human subjects indicating that 
certain types of communications were very pertinent, yet other types of communication were probably not 
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necessary. There are now 15 unknown flows [f1, f2, …, f15] in Figure (24) that need to be determined. It is 
noted that the vector fx represents an exogenous input/output  flow of aircraft through the network and acts 
like a forcing function. For example five aircraft could arrive every hour, so fx would be the input and output 
of the network in terms of fx = 5 aircraft/hour.  
 

ATOF
(Air Terminal  
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Services)

CS
(Cargo
Services)
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Services)
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Communications 
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Figure (22) – The Air Logistics                              Figure (23) – The Air Logistics System 
System – Minimum Communications                       Maximum Communications 
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Figure (24) – The Air Logistics System – The Final Architecture Selected 

 
2.5c – Formulating the Optimization Problem – Find the Flow Vector 
 
 In Figure (24),  the 15 flows [f1,..,f15] need to be determined.  From the architecture selected in Figure 
(24), certain architecture constraints must exist on these 15 flows.  Using Kirchoff’s Law with a cut set around 
each of the five nodes, the following constraint equations result: 
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                                   ATOF:     fx +  f2 + f4+ f6 + f8  =   f1 + f3+ f5 + f7  + fx                                                     (43)              
                                   PS:                               f11+ f1   =   f9 + f2 + f12                                                                 (44)                    
                                   RS:               f15 +  f7 + f9+ f13  =   f10+ f8                                                                         (45)      
                                   FS:                       f10 + f12+ f3   =   f14+ f13+ f4+ f11                                                        (46)                       
                                   CS:                              f5 + f14   =    f15+ f6                                                                      (47)                       
 
The optimization problem can now be formulated as follows: 
 
Given that the flow fx is fixed and constant, find the optimal flow vector [f1, f2, …, f15] that satisfies the 
constraints in equations (43-47) and optimizes a cost function based on the mutual information through the 
overall network of Figure (24). The two optimization problems are specified for the cost function J1: 
 
                                                              J1  = I(x;y) of the network in Figure (24) for fx fixed                        (48) 
 
Optimization Problem 1: Find the optimal vector [f1a, f2a,…, f15a] to maximize J1 subject to the constraint 
equations (43-47) and  a fixed fx. 
 
Optimization Problem 2: Find the optimal vector [f1b, f2b,…,f15b] to minimize J1 subject to the constraint 
equations (43-47) and a fixed fx. 
 
A computational approach will be employed to obtain the solutions to the two optimization problems posed 
above.  
 
2.5c – Formulating the Genetic Algorithm (GA) Approach to Find the Optimal Flow Vectors 
 
The formulation of the GA problem consists of 3 steps: 
 
Step 1: Generation of the Chromosome 
From Figure (24) , there are 15 possible flows to be optimized. However, from equations (43-47), there are 5 
constraints (4 of which are independent). The remaining 11 flows represent the set of flows that needs to be 
determined. 
 
Step 2: The Fitness Function: 
From equation (48),  the calculated overall network’s mutual information (I(x;y)) is the fitness function, 
determined from the network in Figure (24)  subjected to the five constraint equations (43-47).  
 
Step 3: Initial Conditions on the Flow Variables 
In the initiation of the optimization procedure, an admissible set of flow parameters is required. After some 
work, the following initial conditions on the flow variables were selected, which satisfy the constraints in 
equations (43-47): f1 = 3,  f2 = 1,  f3 = 2,  f4 = 2,  f5 = 2,  f6 = 4,  f7 = 3,  f8 = 3, f9  = 1,  f10 = 3,  f11 = 1,  f12 = 2,  f13 
 = 1,  f14  = 3,  f15  = 1. 
         
 Some other issues in this computational study involve the construction of the chromosomes to identify 
each flow fi. Since there are 11 unknown flows, the granularity of the flow variable will be determined by the 
number of bits in each chromosome. Since the maximum flow could be as much as 7 units, as seen in the 
initial conditions set, a 3 bit word (presuming integers for flow variables fi  < 7 was assumed).  Figure (25)  
displays a class of possible chromosomes for the 11 independent flow variables that must be determined. 
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Figure (25) – Construction of the Chromosomes for each flow. 
 
                 
2.5.c.1 Computational Complexity of the Simulation 
 From Figure (25),  each flow can take on up to eight possible values (23). Since there are 11 unknown 
flows, the total number of possible combinations is 811 which is prohibitive to determine in a computational 
sense. Thus a combinatorial nightmare is quickly discovered (NP-complete problem) beyond the capability of 
most practical computers. Hence genetic algorithms were selected to address this problem.  
 
2.5.c.2 Criteria for the Fitness Pool 
 A pool of 20 chromosomes of the optimum J1 values is developed. This is termed the “elite pool.”  
Two types of optimum J1 values are determined (largest I(x;y) or lowest I(x;y)) on two different computer 
simulations. New individual chromosomes are created from the elite pool by using the standard GA operations 
of crossover (to preserve good qualities) and mutation (to include diversity). The ratio of mutation to 
crossover operation was 1/6, which is a little higher than the typical standard in the literature.  
 
2.5.c.3 Convergence Criteria and Computation Time  
 The “elite pool” is initially filled up with 20 identical flows based on the admissible initial conditions.  
As new chromosomes are created, the fitness function value is calculated. The 20 individuals in the elite pool 
are then rank ordered in terms of fitness. If the new chromosome has a level of fitness better than the least 
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optimal member of the elite pool, the new chromosome replaces the former member of the elite pool. This 
process is continued until either the elite pool converges to the same flow values or if a fixed number of 
iterations are reached (e.g. 10,000 iterations).  The most fit members (with the optimal J1 values) are 
considered as the final members of the pool and represent the optimum solution for that amount of 
computational effort.  Two separate computer simulations were conducted to see the difference in the 
optimum solutions of minimum or maximum flow rate (minimum or maximum I(x;y)) values.  
 
2.5.c.4 – Results and Discussion 
 Figures (26) and (27) portray a statistic related to the mutual information (I(x;y)) versus entry number 
into the elite pool for the case of maximization and minimization of mutual information. From an efficiency 
point of view, it took 168 hours of computation time on a personal computer for each plot, thus this is a brute 
force approach. The ratio of best to worst case mutual information flow shows over a 400% difference in 
overall  network performance.  
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Figure (26) – Maximization of J1, the                     Figure (27) – Minimization of J1, the 
Mutual Information of equation (48).                     Mutual Information of equation (48) 
 
2.5.c.5 – The Vulnerability/Sensitivity Definition  
 
 The last remaining portion of this study is to develop a measure of vulnerability/sensitivity of a 
network.  It was seen in the prior section that over a 400% change in network performance can be achieved by 
modulating the flow vector [f1,…, f15]. To derive a measure of sensitivity of performance of a network, 
consider an arbitrary cut set around some nodes in a network as depicted in Figure (28): 

Kirchhoff's Law and Cut sets

Cut set: flows in = flows out 
= 10 units

Cut set: flows in = flows out
= 1 unit

Maximum MI Flow Minimal MI Flow

Network Network

 
 
                     Figure (28) – A Framework for Defining Network Sensitivity/Vulnerability 
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In Figure (28), the cut set on the left indicates a set of nodes that are evaluated when the overall network has a 
maximum level of mutual information flow I(x;y). For the network on the left, let T1 represent the cut set flow 
(sum of the flows into and out of that particular cut set) and W1 represent the total mutual information flow in 
the overall network (W1=I1(x;y)).  For the same physical cut set on the right, when the overall mutual 
information I2(x;y) is minimized, let T2 be the new cut set flow and W2 the new level of mutual information. If 
definitions are made of the form: 
 
                                                                                 ∆T = T1-T2                                                                                            (49) 
and                                                                          ∆W = W1 – W2    = I1(x;y) – I2(x;y)                                     (50) 
 
Then an appropriate definition of sensitivity/vulnerability is provided by SW

T defined as follows: 

                                                                      
T
W

W
T

W
W
T
T

S T
W ∂

∂
=

∆

∆

= lim:                                                        (51) 

For the following reasons: 
(1) ∆W is never zero using the genetic algorithm procedure in which the optimization is not complete 

until two different levels of mutual information are obtained. 
(2) From Figure (28), if a cut set of nodes has low sensitivity (near zero in magnitude) between the 

extreme conditions of maximum and minimum overall mutual information flow, these nodes cannot 
be important in the causality of the network. Conversely, if the cut set of nodes has a large change in 
cut set flow between the maximum and minimum mutual information flow conditions, then these 
candidate nodes are more causal and the presumption is that they directly affect the vulnerability.  

 
2.5.c.6 – The Vulnerability/Sensitivity Results 
 
 Using the definition of sensitivity/vulnerability in equation (51),  the absolute value of SW

T from 
equation (51) was calculated for 10 optimizations of the network in Figure (24). A cut set around the most 
connected node (ATOF) was evaluated versus a lesser connected node (PS). The hypothesis, as usually occurs 
in graph theory investigations, is that the more highly connected node (ATOF) is probably more vulnerable 
than a lesser connected node (PS). This is also consistent with the discussion on vulnerability with respect to 
scale free networks.  Figure (29),  [31], shows the results of this simulation. It demonstrates that in using this 
sensitivity measure the consistent result that more intricate nodes are probably more vulnerable or sensitive.  
 
This concludes the Part I work with respect to bioinspired design and fractals. Next , QFT is discussed. 
 
3.0 REVIEW OF THE QUANTITATIVE FEEDBACK THEORY 
 
 As an introduction to Part 2 of this paper, the history of the birth of QFT (quantitative feedback 
theory) is brought to light. Starting with the work in the early 1960’s, I. Horowitz developed seminal works 
originating from the 1970’s to introduce the QFT method [13, 14, 15] . It has been now applied in the areas of 
flight control, power systems, unmanned air vehicles, and in numerous other applications Houpis, et al.  
[16,17 ].  A review of work from modern data bases indicated a wide range of important applications [3, 4, 8, 
9, 11, 12, 19, 24, 36, 37]. The basics of how QFT is applied are discussed to convert the problem of sensitivity 
of plant variations and robust control to a method amenable to the classical control area will first be presented. 
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Figure (12) –The sensitivity Function defined in equation (32) for ATOF vs PS
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                       Figure (29) – Results of the 5 Sensitivity Simulations 
 

3.1 Some Basics of QFT 
 
Figure (30) shows the basic three-degree-of freedom QFT design problem. The controller is C(s) 
 

F
tracking

errorR(s) C P
Y(s)

-
+ + +

Di Do

+ +

 
 

Figure (30) – The QFT Design Problem Formulation 
 
which needs to be determined, the plant P(s) is specified, the input is R(s) with output Y(s), and the input 
disturbances Di and Do affect the tracking error performance.  The three requirements for QFT design are  
robust stability, reference tracking and disturbance rejection, which are quantified in control theory terms.  
To specify these requirements more concisely, from Figure (30) define the loop gain L(s) as follows: 
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                                                                             L(s) = C(s) P(s)                                                                    (52) 
Then the closed loop transfer function (no  disturbances) between the output Y(s) and R(s) is specified via: 
 
                                                                                                                                                                          (53)                        

Input
OutputFTY

=== (
sL
sLss

sR
s

+ )(1
)()()

)(
)(

 
 
From classical control theory (Houpis, et al. [17]), the sensitivity of the closed loop transfer function T(s) to 
the plant variations P(s) can be specified via: 
                                                     
                                                             
                                                                                                                                                                          (54) )(1 L

S =
∂

1)(
s

P
P

T
T

s
+

∂

=

 
 
Then the three main requirements of QFT can be specified via: 
 

(1) Robust Stability: (closed loop Robust Stability): 
 
 
                                                                                                                                                                          (55) γ≤

1 L+ )(
)(
s

sL

 
This provides a constraint on the peak magnitude of the closed loop frequency response. 
 

(2) Reference Tracking:  Let TL and TU be the lower and upper transfer function, then the requirement is 
that: 

                                                                          |TL(jω)| ≤ | T(j ω) | ≤ TU(jω)|                                                  (56) 
  
 

(3) Disturbance Rejection:  For closed loop tracking error, a weighting function W(jω) is selected such 
that: 
                                                                                                                                
                                                                                                                                                            (57)                        

 
 

)()1 ωω jWjL
≤

11
(+

It is noted that the three conditions above refer to a special class of plants P ε {Pi}. For the two types of 
disturbances in Figure (30) (the plant input disturbance Di and the plant output disturbance Do), they are 
specified via the following two transfer functions: 
 
The transfer function between the plant input disturbance Di and Y which is provided via: 
 
                                                                                                                                                                          (58) 

)(1
))( (

)( ω
ω

ω
ω

jLjDi
di +

jPjYT ==
 
 
and the transfer function between the plant output disturbance Do and Y is given by: 
 
                                                                                                                                                                          (59) 

)(1
1)(

)( ωω
ω

jLjDo
do +

jYT ==
 
 
Then the two disturbance rejection conditions can be specified via: 
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                                                                                                                                                                          (60) didi BT ≤||
                                                          
                                                                                                                                                                          (61) dodo BT ≤||
 
where Bdi and Bdo are frequency dependent functions that can be specified apriori. 
 This brief description of the QFT is sufficient at this point in time. The methodology will be applied 
to a diffusion problem when placed within the context of a closed loop control system problem. It is helpful to 
review the history of the heat equation. 
 
4.0 THE COMMON PROBLEM TO BE STUDIED – THE DIFFUSION EQUATION 
 

Figure (31) displays a version of the classical heat equation. Let u(x,t) represent the temperature  
 
 

f(x)

0
L

u(0,t) = 0                                                                    u(L,t) = 0 x

X=0 X=L

u(x,0) = f(x)

 
 

Figure (31) – A Classical Heat or Diffusion Problem 
 
 
distribution in a cylindrical bar of finite length L oriented along the x-axis and perfectly insulated 
laterally. The assumption is that the heat flow is only in the x direction. The temperature u(x,t) satisfies: 
 
                                                                                                                                                                    (62) 
 
 
with initial condition:                                          u(x,0) = f(x)                                                                    (63) 
 
and boundary conditions:                             u(0,t) = 0 = u(L,t)                ∀ t > 0                                      (64) 
 
where a of equation (62) satisfies:                                                                                                             (65) 
 
 
and the thermal conductivity is k, c is the specific heat with δ as the linear density (mass/ unit length). 
 
Before formulating the QFT problem, it is instructive to review the solution of equation (62) by three 

t
txua

∂
=

∂x
txu ∂∂ ),(),( 2

2

2

k
ca δ

=2
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different approaches.  
 

4.1a Solution of the Diffusion Equation via the Fourier Method 
 
The first solution follows the separation of variable approach, as introduced by J. Fourier. 
 
Assume:                                                                                                                                                            (66) ((Xu )),( tTxtx = )
 
where X(x) and T(t) are assumed to be separate functions, which have to be determined.  
Substituting equation (66) into equation (62) yields: 
 
                                                                                                                                                                          (67) '(( Ta = )('))()2 xXttTxX
 
Which implies:                                                                constant = - λ                                                           (68) ==

'Xa
 
 
This must be a constant since it cannot depend on either t or x. 
  
Hence:                                                                                                                                                               (69) 
 
Which implies:                                                                                                                                                  (70) 
 
and:                                                                                                                                                                   (71) 

)(
)('

)(
)(2

xX
x

tT
tT

()( 2 tTt

t )/ 2

) −

)(' xXx

/ aT λ−= )()

AeT (( λ= ta

('X λ−= )
 
Thus:                                                                                                                                                                 (72)                        )cos(sin(( xCxBX λλ += ))x
 
But from the boundary condition:                     u(0,t ) = 0 ⇒ C = 0                                                                (73) 
 
From the second boundary condition:   u(L,t)  = 0 ∀ t  ⇒                                                                               (74) 

L
nπλ =

 
 
Hence each ui(x,t) satisfies:                                                                                                                              (75) ((( Tu = )), xXttx iii )
 
 
and u(x,t) is the result of the summation of the ui(x,t) terms.                                                                           (76) ∑= (u ),),( txutx i
 
 
Which implies:                                                                                                                                                 (77) )) )(

L
Du ∑=  (sin(),(

)(

1

22

22

La
tn

n
n exntx

ππ −
∞

= 
 
The  Fourier coefficient Dn satisfies:                                                                                                                (78) dx

L
xnx

 
And the infinite series in equation (77) can be shown to converge under appropriate conditions. 

fDn ∫ ⎟
⎞= sin(

L

L

⎠
⎜
⎝
⎛

0

)2 π

 The second approach to solve the heat equation will be through Laplace transforms. 
 
4.1b Solution of the Diffusion Equation via the Laplace Transform Method 
 
A slightly modified example will be considered. Let the temperature variable u(x,y) satisfy: 

RTO-EN-SCI-195 5A - 31 

 



Quantitative Biofractual Feedback - Part I 
Overview - Biofractals  

 

                                                                                                                                                               (79) 

t
txu

x
txu

∂
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=
∂
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2

2

 
 
                                                                                                                                                                          
with initial conditions:                                          u(x,0) = f(x)                                                                        (80) 
 
The boundary conditions are replaced by:       u(x,t) bounded for t > 0, and - ∞ < x <  ∞ .                             (81) 
 ∞

Recall, the Laplace Transform of a function g(t) is specified via:                                                                   (82) ∫ −== )()]([)( dtetgtgLsG st

 
which is permitted under the following conditions:                                                                                         (83) ∞<≤− Mtge t |)(|α

 
For this distributed system, the following definition is then appropriate for the Laplace transform of u(x,t): 
 
 
                                                                                                                                                                          (84) ∫ −= ),(),( dttxuesxU ts

0

0

∞

 
Laplace transforming the time derivative term in equation (79) yields: 
 
                                                                                                              =  s U(x,s) - f(x)                                  (85) )0,(),( ssUdte −=

∂
∫
0

xux
t
uts

∂

∞
−

 
 
using the initial condition f(x) from equation (80).  If the spatial terms        and            are bounded and 
continuous, it then follows that: 
                                                                     
                                                                                                                                                                          (86) 
 
The Laplace transform operator is then applied to the entire equation (79) resulting in: 
 
                                                                                              
                                                                                                                              =  0                                      (87)      
 
Now treating f(x) as a forcing function, equation (87) can be solved as an equation in x as follows: 
 
                                                                                                                                                                          (88)         
 
To find u(x,t), it is now required to obtain the inverse Laplace transform of equation (88): 
 
                                                                            u(x,t) = L-1[ U(x,s) ]                                                              (89) 
 
 
or:                                                       u(x,y) =  L-1                                                                                            (90) 
 
This can be accomplished by integration in the complex plane [25] which can be obtained as follows: 
 
                                                                                                                                                                          (91) 
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A third way to look at the solution of the heat equation is through a fractional calculus framework. 
 
 
4.1c Solution of the Diffusion Equation via the Fractional Calculus Method 
 
The methods of the Heaviside Operational Calculus can be outlined in the following. Starting with the 
appropriate version of the heat equation: 
                                                                                                                                                                          (92) 

t
txua ∂

=
∂

x
txu

∂∂
),(),( 2

2

2

        
 
With initial condition:                                                     u(x,0) = f(x)                                                              (93) 
 
 
and boundary conditions:                                            u(0,t) = 0 = u(L,t)                                                        (94) 
 
If the time derivative in (92) is replaced by the derivative operator:                                                               (95)  
 
And treating p as a constant  yields one of two possible ways to solve the resulting equation in the space 
variable x: 
 
                                                                                                                                                                          (96) 
 
 
Solving (96) in terms of x yields:                                                                                                                     (97) 
 
But B must equal zero from the boundary conditions in equation (94) resulting in: 
 
                                                                                                                                                                          (98) 
 
Again using an infinite series, u(x,t) can be expressed: 
 
                                                            
                                                                                                                                                                         (99) 
 
 
And the positive, integer, powers in (99) can be replaced by the exponent term e(.). The fractional powers 
describe an infinite series fractional differential equation. The solution of (99) can be shown to converge to: 
 
 
                                                                                                                                                                       (100) 
 
Alternatively, equation (96) could be solved for u(x,t) directly in terms of p having square root terms which 
provides a different means of characterizing the diffusion equation within the context of a fractional 
differential equation. 
 
             To conclude this paper, the diffusion equation is now formulated within the context of a QFT control 
problem to bring these constituent areas together in a single application.                                                
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5.0 THE DIFFUSION EQUATION VIEWED WITHIN THE CONTEXT OF QFT 
 
 As a common thread to the prior areas presented, a classical thermal regulation problem is examined 
to show similarities of the heat control problem to the QFT method.  Figure (32) provides a formulation to the 
heat control problem which is amenable to a QFT analysis. 
 
 

u D( t) + e T(t ) Con tro lle r

hea te r

q i(t )
P lan t = P

u a( t)

T herma l s ensors

u a(t )-

F igu re  (32 ) – A H eat C on tro l P rob le m

 
Figure (32) – A Heat Control Problem 

 
In Figure (32) the variables of interest are defined via: uD(t) is the desired temperature (the presumption is that 
a spatial slice has been taken in the distributed system (x = constant), and ua(t) is the actual temperature). The 
temperature error eT(t) is the difference between the desired temperature uD(t) and the actual temperature ua(t), 
which is obtained from the temperature sensors in Figure (32). The thermodynamic heat equation governing 
the relationship between the actual temperature ua(t) and the heat input qi is described by: 
 
                                                                                                                                                                        (101) 0qq

dt
C −=

du
i

a

 
Where the thermal resistance RT is related to q0 as follows: 
 
                                                                                                                                                                        (102)          T

a

R
uq =0

 
and from a units perspective, the above variables have the following physical dimensions: 
 
All ui(t) variables have units of degrees centigrade. 
The thermal capacitance C in equation (101) has units of kilo-calories/ degree centigrade. 
The qi terms in equations (101-102) have units of kilo-calories / second 
The thermal resistance RT has units of degrees centigrade seconds / kilo calories. 
To derive the equations of motion of the plant, equation (101) can be written: 
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                                                                                                                                                                        (103) i
a qqduC =+

dt 0
 
Substituting for q0 of equation (102) yields: 
                                                                             
                                                                                                                                                                        (104)      i

T

aa q
Rdt
uduC =+

 
Multiply through by RT yields:                                                                                                                       (105) iTa

a
T qRu

dt
CR =+

du

 
Laplace transforming with zero initial conditions yields the transfer function to describe the plant dynamics: 
 
                                                                        
                                                                                                                                                                        (106) sCR

R
sQ (1(

=
sU

T

T

i

a

))
)(

+
        
Thus the controller is to be designed is for a first order plant dynamics: To recapitulate a list of the design 
goals, a QFT controller is specified as follows: 
 
QFT Design Goals: 
 
Goal 1: For stability it is required that the closed loop system                                to be stable. 

L
LsT =(
+1

)
 
 
Goal 2:  For Tracking Specifications, the prefilter F(s)  in Figure (30) is designed to satisfy: 
 
                                                             |TL(jω)| <  |F(jω) T(jω)|  < |TU(jω)|                                                   (107) 
 
For specified upper (TU(jω)) and lower (TL(jω))  bounds on the tracking performance specifications. 
 
Goal 3: For disturbance rejection, it is desired to reject disturbances via max |TDi(jω)| <  |MDi(jω)| 
 

Where for the input disturbance Di in Figure (30):                               
L

PTDi +
=

1
                                  (108) 

 

And for the output disturbance Do in Figure (30):                                
L

TD +
=

1
1

0                                  (109) 

QFT Design Procedure: 
 
In the QFT Design procedure, the following five step process is then employed: 
 
Step 1:   Using the Nichols chart find the admissible set of plant templates P ε {Pi}. 
 
Step 2:   From the Nichols chart, generate the performance bounds:  L0(s) = P0(s) G(s). 
 
Step 3:   For loop shaping, now add poles and zero to L0(s). This is now called  )(0 sL . 
 
Step 4:   Design the Prefilter F to keep  |TL| < | F T | < |TU| from equation (107). 
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Step 5:    Finally, to design the final controller, select G(s) to satisfy: 
 
                                                                                                                                                                        (110) )(

)()( 0

sP
G =

sLs
 
 

5.1 Designing the Final QFT Control System: 
 

When comparing Figure (32) to the proposed QFT controller, Figure (33a) results. It indicates that  the 
controller needs an output that feeds into a plant network consisting of flow variables. The plant becomes the 
network system of interest. The appropriate controller output should have units related to flow/unit time such 
mutual information I(x;y) which is bits/sec. For the input to the controller, a difference signal between an 
actual output and a desired output should be compared. Since the plant dynamics are first order (some 
integration occurs), one would suspect a viable  output of the plant should be related to the integral of the 
I(x;y) value. From the prior discussion in section (2.3) of this paper, a proper output variable could be either 
bits or events. From this discussion, the bottom plot in Figure (33b) shows such a possible scenario. The input 
error to the controller may be an error with units of bits or events, which is consistent with the output of the 
plant dynamics. The input to the plant dynamics (output of the controller) should have units similar to mutual 
information. 
 

c o n t ro l le r
S y s te m  i n ?

C o n t ro l le r  o u t?
P la n t  o u t

 
Figure (33a) – The Structure of the Proposed QFT Controller 

 

M I fl o w
E v e n t s /b i ts A
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-
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Figure (33b) – The Final Proposed QFT Controller 
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6.0 CONCLUSIONS 
 
 A problem involving network performance, vulnerability, and other issues is studied under various 
contexts. In Figure (33b) the final controller architecture is proposed that would also be amenable to QFT 
analysis. It is noted that the role of the controller is to have an error signal input in terms of bits or events and 
manipulate the mutual information flow output.  Recall from section (2.5.c.4) this was precisely the procedure 
followed when designing the controller via the maximum and minimum mutual information flow. By 
adjusting the flow vectors, is equivalent to manipulating the knobs in the network, such as in Figure (1).  
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